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Abstract

Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a

small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise,

or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the

eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic

models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core

genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was

surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three

domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the

inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukary-

otesanalyzed.Whenthese issueswere resolved,analyses includingthenewarchaeal lineagesplacedcoreeukaryoticgeneswithin the

Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic

models agree in supporting the eocyte tree over the three domains hypothesis.
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Introduction

Current estimates suggest that sequenced genomes represent

only a tiny fraction of extant microbial diversity, and that much

of the microbial world remains unknown (Rappe and

Giovannoni 2003). Exploration of this microbial “dark matter”

(Marcy et al. 2007) holds tremendous potential for improving

our understanding of the diversity and evolution of life on

Earth. Among prokaryotic groups, the Archaea are particularly

poorly sampled but, in addition to their environmental abun-

dance and importance in the global cycling of carbon and

nitrogen (Pester et al. 2011), they are crucially important for

understanding the origin of eukaryotes. In the traditional three

domains tree, the host cell for the mitochondrial endosymbi-

ont was part of a third domain of cellular life that split from

the Archaea before the diversification of either group (Woese

et al. 1990). The main alternative to this view is that the host

cell was a fully fledged Archaeon, implying that eukaryotes

originated in a partnership between a bacterial endosymbiont

and an archaeal host cell (Lake et al. 1984; Martin and Muller

1998; reviewed in Williams et al. 2013); this view has gained

increased support from phylogenies that place core eukaryotic

genes, including ribosomal RNA and proteins, within the

Archaea (Cox et al. 2008; Foster et al. 2009; Kelly et al.

2011; Williams et al. 2012; Lasek-Nesselquist and Gogarten

2013). In particular, recent phylogenies have placed these core

eukaryotic genes within, or as the sister group to, the TACK

superphylum of Archaea (Guy and Ettema 2011) comprising

the Thaumarchaeota (Brochier-Armanet et al. 2008),

Aigarchaeota (Nunoura et al. 2011), Crenarchaeota (or

eocytes), and Korarchaeota (Elkins et al. 2008), consistent

with an extended version of the eocyte hypothesis of Lake

et al. (1984).

The recent publication of the most comprehensive survey

of uncultured microbial diversity to date (Rinke et al. 2013) has

provided an unprecedented wealth of valuable new genomic

data to refine the phylogenetic position of core eukaryotic

genes and to test hypotheses for eukaryotic origins.

Genomes from new archaeal lineages are particularly wel-

come because improvements in taxon sampling are generally

expected to increase the reliability of the resulting phyloge-

netic trees (Graybeal 1998). Interestingly, an initial phyloge-

netic analysis of 38 protein-coding genes shared between

Bacteria, eukaryotes, and an expanded sampling of Archaea

from the Genomic Encyclopedia of Bacteria and Archaea

GBE
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(GEBA) project recovered a strongly supported three domains

tree in which eukaryotes branched outside a monophyletic

Archaea (Rinke et al. 2013). This result was particularly striking

because previous improvements in archaeal sampling, includ-

ing the sequencing of organisms from the TACK superphylum

(Guy and Ettema 2011), have otherwise favored topologies

consistent with archaeal-host hypotheses rather than the tra-

ditional three domains tree (Lasek-Nesselquist and Gogarten

2013; Williams et al. 2012). In this study, we have investigated

the possible reasons for the disagreement between these pre-

vious studies and the recent analyses of Rinke et al. (2013).

Materials and Methods

Sequences and Alignments

The sequence alignments and tree files generated as part

of these analyses have been deposited on Figshare (http://fig

share.com/articles/Supplementary_data_files_for_Archaeal_

dark_matter_and_the_origin_of_eukaryotes_/926485; DOI:

http://www.dx.doi.org/10.6084/m9.figshare.926485, last

accessed February 23, 2014). Single gene trees for the indi-

vidual genes of the original Rinke et al. (2013) concatenation

were built using RAxML 7.7.2 (Stamatakis 2006) with the

LG + F substitution model and 200 rapid bootstraps. Putative

mitochondrial and plastid genes were identified as eukaryotic

sequences grouping with, or within, the Bacteria with strong

support (�70% bootstrap support) in single-gene phyloge-

nies. For each of the cases so identified, we confirmed that

they were annotated as mitochondrial or plastid sequences in

NCBI GenBank. In the case of triose phosphate isomerase,

published analyses support its secondary acquisition by eu-

karyotes from Bacteria (Keeling and Doolittle 1997). Full de-

tails of each of the organellar genes identified in this way are

provided in supplementary table S1, Supplementary Material

online. In updating the original concatenation, we replaced

the detected organellar sequences with their nucleocytoplas-

mic homologs (i.e., the orthologs of the other eukaryotic se-

quences in the alignment), where possible. We then built new

single-gene trees to confirm that the appropriate replacement

sequences had been found, by confirming the monophyly of

the eukaryotic clade. The genes were aligned, and the align-

ments edited, as described in Rinke et al. (2013).

We assigned orthologs from the newly sequenced archaeal

genomes to our existing 29-gene data set using Cognitor

(Tatusov et al. 2003). The protein sequences were aligned

using Muscle (Edgar 2004), Mafft (Katoh et al. 2005),

ProbCons (Do et al. 2005), Kalign (Lassmann and

Sonnhammer 2005), and Fsa (Bradley et al. 2009), and a con-

sensus alignment generated with T-Coffee (Notredame et al.

2000). Poorly aligning positions were detected and removed

with BMGE (Criscuolo and Gribaldo 2010) using the

BLOSUM30 matrix to score conservation.

Phylogenetics

The analyses with single-matrix models used amino acid fre-

quencies inferred from the data by maximum likelihood;

both single-matrix and site-heterogeneous analyses em-

ployed a discrete approximation to the gamma distribution

with four rate categories (Yang 1994) for modeling across-

site rate variation. The best fitting single-matrix substitution

models were chosen using ProtTest3 (Darriba et al. 2011). To

compare the fit of single-matrix and site-heterogeneous

models in a Bayesian context, we used posterior predictive

simulations (Bollback 2002) as implemented in the ppred

program of the PhyloBayes package (http://www.phylo-

bayes.org, last accessed February 23, 2014). Maximum like-

lihood phylogenies were inferred using RAxML 7.7.2, using

200 rapid bootstraps for each tree. Bayesian analyses were

performed using PhyloBayes 3.3 (Lartillot et al. 2009) and

PhyloBayes MPI 1.5a (Lartillot et al. 2013). We ran two inde-

pendent MCMC chains for each analysis, and used the in-

cluded bpcomp and tracecomp programs to generate

convergence diagnostics. Chains were stopped when the

maximum discrepancy in bipartition frequencies and several

additional summary variables (including the alpha parameter

for across-site rate variation, tree length, mean posterior log-

likelihood) between the two chains dropped below 0.1, and

the effective sizes of the summary variables were all more

than 100, as recommended by the authors.

Results and Discussion

Analysis of the Original Dark Matter Supermatrix

The initial dark matter phylogeny providing support for the

three domains tree was inferred under the Jones–Taylor–

Thornton (JTT) phylogenetic model (Jones et al. 1992) from

a concatenation (supermatrix; de Queiroz and Gatesy 2007) of

38 protein-coding genes. As the fit of the phylogenetic model

to the data has previously been shown to play an important

role in the recovery of a three domains or eocyte tree (Cox

et al. 2008; Foster et al. 2009; Lasek-Nesselquist and Gogarten

2013; Williams et al. 2013), we first investigated the fit of this

model to the original dark matter protein supermatrix. Model

selection using ProtTest3 (Darriba et al. 2011) suggested that

the alternative single matrix LG model (Le and Gascuel 2008)

provided a better fit to the data under both the Akaike

Information Criterion and the Bayesian Information Criterion

than the JTT model. A Bayesian phylogenetic analysis using

the LG model (fig. 1a) recovered a three domains tree with

maximal support (posterior probability of 1 for archaeal mono-

phyly). However, even the best-fitting single-matrix model (in

this case, LG) may provide a relatively poor fit to data sets

containing highly divergent sequences (Quang le et al.

2008; Williams et al. 2012). In particular, single-matrix

models do not account for variation in sequence composition

across sites, which may lead to tree reconstruction artifacts
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FIG. 1.—Bayesian phylogenies inferred from the dark matter supermatrix of Rinke et al. (2013). (a) The consensus tree inferred under the best-fitting LG

single matrix model. This is a three domains (Woese et al. 1990) tree, with maximal support (PP¼ 1) for archaeal monophyly. (b) The tree inferred under the

CAT + GTR model for this data set does not correspond to any published hypothesis on the tree of life, with the Archaea emerging from within a paraphyletic

eukaryotic clade; this topology is likely due to contamination of the eukaryotic data set with genes of mitochondrial and plastid origin. Our interpretation is

based on a root for the tree of life within the Bacteria (Cavalier-Smith 2006; Lake et al. 2009), or on the bacterial stem (Gogarten et al. 1989; Iwabe et al.

1989; Dagan et al. 2010). Branch lengths are proportional to expected numbers of substitutions per site, and support values are Bayesian posterior

probabilities.
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such as long-branch attraction (LBA; Philippe et al. 2011).

We therefore investigated whether the more flexible

CAT + GTR site mixture model (Lartillot and Philippe 2004)

also favored the three domains over the eocyte hypothesis

for this data set. Posterior predictive tests (Bollback 2002) sug-

gested that the CAT + GTR model fits the data better than the

LG model, at least with respect to modeling the site-specific

biochemical properties of the alignment (P¼ 0.057 for

CAT + GTR, P¼ 0 for LG). This feature of sequence data is

considered particularly important because accurate modeling

of site-specific selective constraints helps to distinguish molec-

ular homoplasies (convergent evolution) from synapomor-

phies (historical signal), potentially mitigating the effects of

LBA (Lartillot et al. 2007). Surprisingly, the tree inferred

under the best fitting CAT + GTR model did not support

either the three domains or eocyte hypotheses, or indeed

any other established hypothesis for the tree of life (fig. 1b);

instead it supports an unexpected scenario in which core ar-

chaeal genes were derived from within the eukaryotic radia-

tion (fig. 1b).

To investigate the origin of the apparent signal for eukary-

otic paraphyly in the dark matter supermatrix, we built trees

for each of the 38 genes included in the original concatena-

tion (Rinke et al. 2013). The results of this analysis were sur-

prising: for 18 of the 38 genes, the eukaryotes were not

monophyletic because one or more of the eukaryotic se-

quences clustered within the Bacteria (supplementary fig. S1

[Supplementary Material online] and summarized in supple-

mentary table S1 [Supplementary Material online]). In these 18

trees, the other eukaryotes formed a clade either within the

Archaea (16/18), as their sister group (1/18), or were inter-

spersed with archaeal homologs (1/18). For 12 additional

genes eukaryotes grouped within the Bacteria (8/12), com-

prised only two eukaryotic sequences (2/12), or the genes

have apparently been lost from eukaryotes and/or Archaea

(2/12). The observed nonmonophyly of eukaryotes in the 18

single gene trees can be explained in part by the inclusion of

mitochondrial and plastid sequences in the eukaryotic data set

(supplementary fig. S1, Supplementary Material online). For

example, all of the bacterial-like Saccharomyces cerevisiae se-

quences are annotated in the NCBI RefSeq database as mito-

chondrial genes (supplementary table S2, Supplementary

Material online). The phenyl-tRNA ligase of Phaeodactylum

tricornutum groups strongly with the cyanobacterium

Synechocystis, consistent with a plastid origin (supplementary

fig. S1, Supplementary Material online). These organellar se-

quences are not useful for testing the three domains/eocyte

question because they trace their ancestry to the free-living

ancestors of the mitochondrion or plastid rather than to the

eukaryotic host cell lineage. Moreover, the inclusion of mito-

chondrial and plastid sequences in the eukaryotic data is ex-

pected to weight the analysis against the eocyte topology,

because it will tend to draw the eukaryotes and Bacteria to-

gether in the tree—as can be seen most clearly in figure 1b.

To investigate further, the automatic gene selection, align-

ment, and masking pipeline (Darling et al. 2014) that was

used in Rinke et al. (2013) was rerun, but additional checks

for excluding eukaryotic genes of putative mitochondrial and

plastid origin, and for improving taxonomic representation,

were included. The new alignment produced by the automatic

pipeline contained 20 genes. Eighteen genes from the original

data set were removed because these genes had only a patchy

distribution in Archaea and/or eukaryotes (supplementary

table S3, Supplementary Material online) as determined by

the PhyloSift pipeline (Darling et al. 2014). As before, we

used ProtTest3 (Darriba et al. 2011) to select the best-fitting

single-matrix model (LG) for the new 20-gene alignment, and

also evaluated the fit of the more flexible CAT + GTR model.

Posterior predictive simulations (Bollback 2002) indicated that

CAT + GTR, but not LG, adequately accounted for the site-

specific biochemical properties of the alignment (P¼0.069 for

CAT + GTR, P¼ 0 for LG) (Lartillot et al. 2007). For this super-

matrix, we inferred a weakly supported three domains tree

under the LG model, with a posterior probability of 0.5 for

archaeal monophyly (fig. 2a). By contrast, the better-fitting

CAT + GTR model recovered a maximally supported eocyte

tree (fig. 2b). The results from this 20-gene data set are there-

fore consistent with previous analyses in which improving the

fit of the phylogenetic model weakened support for the three

domains hypothesis and led to the recovery of an eocyte tree

(Cox et al. 2008; Foster et al. 2009; Lasek-Nesselquist and

Gogarten 2013). The mitochondrial and plastid contamination

of the original data set appears to have been an important

factor in these results, as can be seen by comparing the trees

inferred under the best-fitting model (CAT + GTR) before and

after these sequences were removed (figs. 1b and 2b).

A Complementary Data Set for Investigating Eukaryotic
Host Cell Origins

Phylogenetic analyses aimed at understanding the origin of

the eukaryotic host cell have typically focused on a broadly

conserved core of 30–40 genes that are primarily involved in

translation, and which appear to be more resistant to lineage-

specific loss and horizontal transfer than other genes (Rivera

et al. 1998). Published analyses of these genes have used

overlapping subsets of this conserved core due to differences

in taxonomic sampling and the protocols used to select phy-

logenetic markers. In a previous analysis of the relationship

between eukaryotic and archaeal core genes (Williams et al.

2012), we used a set of 29 single-copy orthologs conserved in

a representative taxonomic sample of Archaea, Eukaryotes,

and Bacteria. The overlap (16 genes) between that data set

and the 38 genes originally used by Rinke et al. (2013) is

modest (supplementary table S3, Supplementary Material

online). This is due in part to the different starting points for

our ortholog searches—Bacteria for Rinke et al. (2013), and

the eukaryotic red alga Cyanidioschyzon merolae in our

Archaeal “Dark Matter” GBE

Genome Biol. Evol. 6(3):474–481. doi:10.1093/gbe/evu031 Advance Access publication February 14, 2014 477

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/6/3/474/576579 by guest on 10 April 2024

long 
)
u
-
l
l
-
(
)
(
)
``
''
``
''
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
ue
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
``
''
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
-
 - 
(
)
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
-
-
(
)
-
(
)
-
(
)
(
)
-
ue
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu031/-/DC1
orthologue 
 -- 
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FIG. 2.—Bayesian phylogenies inferred from the dark matter data set after eukaryotic genes of bacterial origin had been replaced with their nucleo-

cytosolic homologues. (a) Inference under the LG model recovers a weakly supported three domains tree, with support for archaeal monophyly reduced to

0.5. (b) The better-fitting CAT + GTR model recovers a strongly supported eocyte tree, with core eukaryotic genes forming a clade with the TACK

superphylum of Archaea with maximum support (PP¼ 1). Our interpretation is based on a root for the tree of life within the Bacteria (Cavalier-Smith

2006; Lake et al. 2009), or on the bacterial stem (Gogarten et al. 1989; Iwabe et al. 1989; Dagan et al. 2010). Branch lengths are proportional to expected

numbers of substitutions per site, and support values are Bayesian posterior probabilities.
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previous work (Cox et al. 2008; Williams et al. 2012). Another

factor in the differences between the two data sets was the

requirement by Williams et al. (2012) that the selected genes

be conserved as single-copy orthologs across all ten eukaryotic

genomes analyzed. The representation of eukaryotes in the

automatically generated data set of Rinke et al. (2013) was

more variable: of 11 eukaryotic genomes included in the anal-

ysis, a mean of 7.8 (range 0–11) were represented in each

single gene alignment.

We updated the Williams et al. (2012) 29-gene data set

with orthologs from the newly sequenced archaeal genomes

using Cognitor (Tatusov et al. 2003), and inferred a Bayesian

phylogeny using the CAT + GTR model from the concate-

nated alignment (fig. 3). This analysis agreed with the

CAT + GTR tree inferred from the new 20 gene version of

the Rinke et al. (2013) data set in placing the eukaryotes

within the Archaea as the closest relatives of the TACK super-

phylum, and recovering a clade containing Nanoarchaeum,

the Nanohaloarchaeota (Nanosalinarum and Nanosalina sp.;

Narasingarao et al. 2012), the ARMAN lineages (Baker et al.

2006), and the new DPANN Archaea with strong support

(PP¼ 0.99). It may be that the improved sampling achieved

FIG. 3.—Bayesian concatenated protein phylogeny inferred from a congruent set of 29 genes conserved in Bacteria, Archaea, and eukaryotes. The

eukaryotes emerge from within the TACK superphylum of Archaea with maximal support. There is strong support (PP¼0.99) for the monophyly of

Nanoarchaeum equitans with the newly sequenced “DPANN” Archaea. These are the 29 genes from Williams et al. (2012), updated to include the new

archaeal sequences from the GEBA project (Rinke et al. 2013). The tree was inferred using the CAT + GTR model in PhyloBayes MPI (Lartillot et al. 2013). Our

interpretation is based on a root for the tree of life within the Bacteria (Cavalier-Smith 2006; Lake et al. 2009), or on the bacterial stem (Gogarten et al. 1989;

Iwabe et al. 1989; Dagan et al. 2010). Branch lengths are proportional to expected numbers of substitutions per site, and support values are Bayesian

posterior probabilities.
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by Rinke et al. (2013) has helped to stabilize the position of

these previously problematic taxa (Brochier-Armanet et al.

2011) in phylogenetic trees. Our analyses also suggest that

the position of the DPANN clade as a whole within the

Archaea is still somewhat ambiguous, although they are ex-

cluded from the TACK/eukaryote clade in all of our analyses.

The analysis also recovered Korarchaeum as the closest relative

of the eukaryotes, a result also obtained previously (Williams

et al. 2012). The recovery of an eocyte tree, rather than the

three domains tree, from both data sets suggests that this

result is robust to the choice of genes, alignment methods,

or masking protocols.

Conclusions

The Genomic Encyclopaedia of microbial dark matter (Rinke

et al. 2013) represents a tremendous scientific and technical

achievement with the potential to dramatically improve our

understanding of the natural microbial world. The project has

already provided new insights into the metabolic diversity of

prokaryotes, and the wealth of new genome data is likely to

stimulate much future work on microbial evolution and ecol-

ogy. Here, we have investigated the impact of the newly se-

quenced archaeal lineages on support for the three domains

and eocyte trees. Deciding which of these trees is better sup-

ported in the light of the new data is important because they

underpin contrasting hypotheses for the origin of eukaryotic

cells and the host for the mitochondrial endosymbiont

(Williams et al. 2013). In the original dark matter paper, it

was suggested that the new data were not consistent with

the eocyte hypothesis, and indeed a strongly supported three

domains tree was recovered in those initial analyses (Rinke

et al. 2013). This result was surprising because prior improve-

ments in archaeal sampling had tended to weaken, rather

than strengthen, support for the three domains tree (Guy

and Ettema 2011; Kelly et al. 2011; Williams et al. 2012,

2013; Lasek-Nesselquist and Gogarten 2013). Here, we dem-

onstrate that the preference for the three domains tree was

driven in part by the inclusion of genes of bacterial origin for

eukaryotes in the original, automatically generated dark mat-

ter alignments. When this issue was addressed in a broadly

sampled subset of the original supermatrix, a weakly sup-

ported three domains tree was inferred under the single-

matrix LG model, but a strongly supported eocyte tree was

inferred under the better fitting CAT + GTR model (fig. 2).

Addition of the new archaeal sequences to a previously pub-

lished data set (Williams et al. 2012) also provided strong sup-

port for an eocyte topology using the CAT + GTR model.

These results, incorporating the newly discovered archaeal

dark matter, are thus in line with recent analyses that

converge on a version of the eocyte hypothesis in which

core eukaryotic genes are related to those of the TACK

Archaea, rather than the alternative three domains tree

(Williams et al. 2013).

Supplementary Material

Supplementary figures S1 and tables S1–S3 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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