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Abstract

A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium

members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current

estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than10%.

Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies

that at least 80� 10¼70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever

occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was

reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then

applying it inconsistently todifferentbiochemicalproperties,bycommittinga logical fallacyknownas“affirmingtheconsequent,” by

failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” by using analytical methods that yield biased

errorsand inflateestimatesof functionality,by favoringstatistical sensitivityover specificity, andbyemphasizingstatistical significance

rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning

functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to neces-

sitate the rewriting of textbooks. We agree,many textbooks dealing with marketing, mass-media hype, and public relations may well

have to be rewritten.
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“Data is not information, information is not knowledge,

knowledge is not wisdom, wisdom is not truth,”
—Robert Royar (1994) paraphrasing Frank

Zappa’s (1979) anadiplosis

“I would be quite proud to have served on the

committee that designed the E. coli genome. There is,

however, no way that I would admit to serving on a

committee that designed the human genome. Not even

a university committee could botch something that

badly.”
—David Penny (personal communication)

“The onion test is a simple reality check for anyone who

thinks they can assign a function to every nucleotide in

the human genome.

Whatever your proposed functions are, ask yourself this

question: Why does an onion need a genome that is

about five times larger than ours?”
—T. Ryan Gregory (personal communication)

Early releases of the ENCyclopedia Of DNA Elements

(ENCODE) were mainly aimed at providing a “parts list” for

the human genome (ENCODE Project Consortium 2004). The

latest batch of ENCODE Consortium publications, specifically

the article signed by all Consortium members (ENCODE

Project Consortium 2012), has much more ambitious interpre-

tative aims (and a much better orchestrated public relations

campaign). The ENCODE Consortium aims to convince its

readers that almost every nucleotide in the human genome

GBE
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has a function and that these functions can be maintained

indefinitely without selection. ENCODE accomplishes these

aims mainly by playing fast and loose with the term “func-

tion,” by divorcing genomic analysis from its evolutionary con-

text and ignoring a century of population genetics theory, and

by employing methods that consistently overestimate func-

tionality, while at the same time being very careful that

these estimates do not reach 100%. More generally, the

ENCODE Consortium has fallen trap to the genomic equiva-

lent of the human propensity to see meaningful patterns in

random data—known as apophenia (Brugger 2001; Fyfe et al.

2008)—that have brought us other “codes” in the past

(Witztum 1994; Schinner 2007).

Three papers have already commented critically on aspects

of the ENCODE inferences (Eddy 2012; Niu and Jiang 2013;

Bray and Pachter 2013), but without addressing the issues

exclusively from an evolutionary genomics perspective. In

the following, we shall dissect several logical, methodological,

and statistical improprieties involved in assigning functionality

to almost every nucleotide in the genome. We shall only deal

with a single article (ENCODE Project Consortium 2012) out of

more than 30 that have been published since the 6 September

2012 release. We shall also refer to three commentaries, one

written by a scientist and two written by Science journalists

(Ecker 2012; Pennisi 2012a, 2012b), all trumpeting the death

of “junk DNA.”

“Selected Effect” and “Causal Role”
Functions

The ENCODE Project Consortium assigns function to 80.4%

of the genome (ENCODE Project Consortium 2012). We dis-

agree with this estimate. However, before challenging this

estimate, it is necessary to discuss the meaning of “function”
and “functionality.” Like many words in the English language,

these terms have numerous meanings. What meaning, then,

should we use? In biology, there are two main concepts of

function: the “selected effect” and “causal role” concepts of

function. The “selected effect” concept is historical and evo-

lutionary (Millikan 1989; Neander 1991). Accordingly, for a

trait, T, to have a proper biological function, F, it is necessary

and (almost) sufficient that the following two conditions hold:

1) T originated as a “reproduction” (a copy or a copy of a

copy) of some prior trait that performed F (or some function

similar to F) in the past, and 2) T exists because of F (Millikan

1989). In other words, the “selected effect” function of a trait

is the effect for which it was selected, or by which it is main-

tained. In contrast, the “causal role” concept is ahistorical and

nonevolutionary (Cummins 1975; Amundson and Lauder

1994). That is, for a trait, Q, to have a “causal role” function,

G, it is necessary and sufficient that Q performs G. For clarity,

let us use the following illustration (Griffiths 2009). There are

two almost identical sequences in the genome. The first, TATA

AA, has been maintained by natural selection to bind a

transcription factor; hence, its selected effect function is to

bind this transcription factor. A second sequence has arisen

by mutation and, purely by chance, it resembles the first se-

quence; therefore, it also binds the transcription factor.

However, transcription factor binding to the second sequence

does not result in transcription, that is, it has no adaptive or

maladaptive consequence. Thus, the second sequence has no

selected effect function, but its causal role function is to bind a

transcription factor.

The causal role concept of function can lead to bizarre

outcomes in the biological sciences. For example, while the

selected effect function of the heart can be stated unambig-

uously to be the pumping of blood, the heart may be assigned

many additional causal role functions, such as adding 300 g to

body weight, producing sounds, and preventing the pericar-

dium from deflating onto itself. As a result, most biologists use

the selected effect concept of function, following the

Dobzhanskyan dictum according to which biological sense

can only be derived from evolutionary context. We note

that the causal role concept may sometimes be useful;

mostly as an ad hoc device for traits whose evolutionary his-

tory and underlying biology are obscure. This is obviously not

the case with DNA sequences.

The main advantage of the selected-effect function defini-

tion is that it suggests a clear and conservative method of

inference for function in DNA sequences; only sequences

that can be shown to be under selection can be claimed

with any degree of confidence to be functional. The selected

effect definition of function has led to the discovery of many

new functions, for example, microRNAs (Lee et al. 1993), and

to the rejection of putative functions, for example, numts

(Hazkani-Covo et al. 2010).

From an evolutionary viewpoint, a function can be assigned

to a DNA sequence if and only if it is possible to destroy it. All

functional entities in the universe can be rendered nonfunc-

tional by the ravages of time, entropy, mutation, and what

have you. Unless a genomic functionality is actively protected

by selection, it will accumulate deleterious mutations and will

cease to be functional. The absurd alternative, which unfor-

tunately was adopted by ENCODE, is to assume that no

deleterious mutations can ever occur in the regions they

have deemed to be functional. Such an assumption is akin

to claiming that a television set left on and unattended will

still be in working condition after a million years because no

natural events, such as rust, erosion, static electricity, and

earthquakes can affect it. The convoluted rationale for the

decision to discard evolutionary conservation and constraint

as the arbiters of functionality put forward by a lead ENCODE

author (Stamatoyannopoulos 2012) is groundless and

self-serving.

Of course, it is not always easy to detect selection.

Functional sequences may be under selection regimes that

are difficult to detect, such as positive selection or weak

(statistically undetectable) purifying selection, or they may be
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recently evolved species-specific elements. We recognize

these difficulties, but it would be ridiculous to assume that

70+% of the human genome consists of elements under

undetectable selection, especially given other pieces of evi-

dence, such as mutational load (Knudson 1979; Charlesworth

et al. 1993). Hence, the proportion of the human genome

that is functional is likely to be larger to some extent than

the approximately 9% for which there exists some evidence

for selection (Smith et al. 2004), but the fraction is unlikely to

be anything even approaching 80%. Finally, we would like to

emphasize that the fact that it is sometimes difficult to identify

selection should never be used as a justification to ignore se-

lection altogether in assigning functionality to parts of the

human genome.

ENCODE adopted a strong version of the causal role defi-

nition of function, according to which a functional element is

a discrete genome segment that produces a protein or an RNA

or displays a reproducible biochemical signature (e.g., protein

binding). Oddly, ENCODE not only uses the wrong concept of

functionality, it uses it wrongly and inconsistently (see below).

Using the Wrong Definition of
“Functionality” Wrongly

Estimates of functionality based on conservation are likely to

be, well, conservative. Thus, the aim of the ENCODE

Consortium to identify functions experimentally is, in principle,

a worthy one. We have already seen that ENCODE uses an

evolution-free definition of “functionality.” Let us for the sake

of argument assume that there is nothing wrong with this

practice. Do they use the concept of causal role function prop-

erly? According to ENCODE, for a DNA segment to be

ascribed functionality it needs to 1) be transcribed, 2) be asso-

ciated with a modified histone, 3) be located in an open-

chromatin area, 4) bind a transcription factor, or 5) contain

a methylated CpG dinucleotide. We note that most of these

properties of DNA do not describe a function; some describe a

particular genomic location or a feature related to nucleotide

composition. To turn these properties into causal role func-

tions, the ENCODE authors engage in a logical fallacy known

as “affirming the consequent.” The ENCODE argument goes

like this:

1. DNA segments that “function” in a particular biological
process (e.g., regulating transcription) tend to display a
certain “property” (e.g., transcription factors bind to
them).

2. A DNA segment displays the same “property.”
3. Therefore, the DNA segment is “functional.”

(More succinctly: if function, then property; thus, if property,

therefore function.) This kind of argument is false because a

DNA segment may display a property without necessarily

manifesting the putative function. For example, a random se-

quence may bind a transcription factor, but that may not

result in transcription. The ENCODE authors apply this

flawed reasoning to all their functions.

Is 80% of the Genome Functional? Or
Is It 100%? Or 40%? No Wait . . .

So far, we have seen that as far as functionality is concerned,

ENCODE used the wrong definition wrongly. We must now

address the question of consistency. Specifically, did ENCODE

use the wrong definition wrongly in a consistent manner? We

do not think so. For example, the ENCODE authors singled out

transcription as a function, as if the passage of RNA polymer-

ase through a DNA sequence is in some way more meaningful

than other functions. But, what about DNA polymerase and

DNA replication? Why make a big fuss about 74.7% of the

genome that is transcribed, and yet ignore the fact that 100%

of the genome takes part in a strikingly “reproducible bio-

chemical signature”—it replicates!

Actually, the ENCODE authors could have chosen any of a

number of arbitrary percentages as “functional,” and . . . they

did! In their scientific publications, ENCODE promoted the

idea that 80% of the human genome was functional. The

scientific commentators followed, and proclaimed that at

least 80% of the genome is “active and needed” (Kolata

2012). Subsequently, one of the lead authors of ENCODE

admitted that the press conference mislead people by claim-

ing that 80% of our genome was “essential and useful.” He

put that number at 40% (Gregory 2012), although another

lead author reduced the fraction of the genome that is de-

voted to function to merely 20% (Hall 2012). Interestingly,

even when a lead author of ENCODE reduced the functional

genomic fraction to 20%, he continued to insist that the term

“junk DNA” needs “to be totally expunged from the lexicon,”
inventing a new arithmetic according to which 20%> 80%.

In its synopsis of the year 2012, the journal Nature adopted

the more modest estimate, and summarized the findings of

ENCODE by stating that “at least 20% of the genome can

influence gene expression” (Van Noorden 2012). Science

stuck to its maximalist guns, and its summary of 2012 re-

peated the claim that the “functional portion” of the

human genome equals 80% (Anonymous 2012). Unfortu-

nately, neither 80% nor 20% are based on actual evidence.

The ENCODE Incongruity

Armed with the proper concept of function, one can derive

expectations concerning the rates and patterns of evolution of

functional and nonfunctional parts of the genome. The surest

indicator of the existence of a genomic function is that losing

it has some phenotypic consequence for the organism.

Countless natural experiments testing the functionality of

every region of the human genome through mutation have

taken place over millions of years of evolution in our ancestors

and close relatives. As most mutations in functional regions
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are likely to impair function, they will tend to be eliminated by

natural selection. Thus, functional regions of the genome

should evolve more slowly, and therefore be more conserved

among species than nonfunctional ones. The majority of com-

parative genomic studies suggest that less than 15% of the

genome is functional according to the evolutionary conserva-

tion criterion (Smith et al. 2004; Meader et al. 2010; Ponting

and Hardison 2011), with the most comprehensive study to

date suggesting a value of approximately 5% (Lindblad-Toh

et al. 2011). Ward and Kellis (2012) confirmed that

approximately 5% of the genome is interspecifically con-

served, and by using intraspecific variation, found evidence

of lineage-specific constraint suggesting that an additional

4% of the human genome is under selection (i.e., functional),

bringing the total fraction of the genome that is certain to be

functional to approximately 9%. The journal Science used this

value to proclaim “No More Junk DNA” (Hurtley 2012), thus,

in effect rounding up 9% to 100%.

In 2007, an ENCODE pilot-phase publication (ENCODE

Project Consortium 2007) estimated that 60% of the

genome is functional. The 2012 ENCODE estimate (ENCODE

Project Consortium 2012) of 80.4% represents a significant

increase over the 2007 value. Of course, neither estimate is

congruent with estimates based on evolutionary conservation.

With apologies to the late Robert Ludlum, we shall refer to the

difference between the fraction of the genome claimed by

ENCODE to be functional (>80%) and the fraction of the

genome under selection (2–15%) as the “ENCODE

Incongruity.” The ENCODE Incongruity implies that a biolog-

ical function can be maintained without selection, which in

turn implies that no deleterious mutations can occur in those

genomic sequences described by ENCODE as functional.

Curiously, Ward and Kellis, who estimated that only approx-

imately 9% of the genome is under selection (Smith et al.

2004), themselves embody this incongruity, as they are co-

authors of the principal publication of the ENCODE

Consortium (ENCODE Project Consortium 2012).

Revisiting Five ENCODE “Functions”
and the Statistical Transgressions
Committed for the Purpose of
Inflating Their Genomic Pervasiveness

According to ENCODE, 74.7% of the genome is transcribed,

56.1% is associated with modified histones, 15.2% is found

in open-chromatin areas, 8.5% binds transcription factors,

and 4.6% consists of methylated CpG dinucleotides. In the

following sections, we discuss the validity of each of these

“functions.” We decided to ignore some the ENCODE func-

tions, especially those for which the quantitative data are dif-

ficult to obtain. For example, we do not know what

proportion of the human genome is involved in chromatin

interactions. All we know is that the majority of interacting

sites (98%) are intrachromosomal, that the distance between

interacting sites ranges between 105 and 107 nucleotides, and

that the majority of interactions cannot be explained by a

commonality of function (ENCODE Project Consortium 2012).

In our evaluation of the properties deemed functional by

ENCODE, we pay special attention to the means by which the

genomic pervasiveness of functional DNA was inflated. We

identified three main statistical infractions. ENCODE used

methodologies encouraging biased errors in favor of inflating

estimates of functionality, it consistently and excessively

favored sensitivity over specificity, and it paid unwarranted

attention to statistical significance, rather than to the magni-

tude of the effect.

Transcription Does Not Equal Function

The ENCODE Project Consortium systematically catalogued

every transcribed piece of DNA as functional. In real life,

whether a transcript has a function depends on many addi-

tional factors. For example, ENCODE ignores the fact that

transcription is fundamentally a stochastic process (Raj and

van Oudenaarden 2008). Some studies even indicate that

90% of the transcripts generated by RNA polymerase II may

represent transcriptional noise (Struhl 2007). In fact, many

transcripts generated by transcriptional noise exhibit extensive

association with ribosomes and some are even translated

(Wilson and Masel 2011).

We note that ENCODE used almost exclusively pluripotent

stem cells and cancer cells, which are known as transcription-

ally permissive environments. In these cells, the components of

the Pol II enzyme complex can increase up to 1,000-fold, al-

lowing for high transcription levels from nonpromoter and

weak promoter sequences. In other words, in these cells tran-

scription of nonfunctional sequences, that is, DNA sequences

that lack a bona fide promoter, occurs at high rates (Marques

et al. 2005; Babushok et al. 2007). The use of HeLa cells is

particularly suspect, as these cells are not representative of

human cells, and have even been defined as an independent

biological species (Helacyton gartleri) (Van Valen and Maior-

ana 1991). In the following, we describe three classes of se-

quences that are known to be abundantly transcribed, but are

typically devoid of function: pseudogenes, introns, and mobile

elements.

The human genome is rife with dead copies of protein-

coding and RNA-specifying genes that have been rendered

inactive by mutation. These elements are called pseudogenes

(Karro et al. 2007). Pseudogenes come in many flavors (e.g.,

processed, duplicated, unitary) and, by definition, they are

nonfunctional. The measly handful of “pseudogenes” that

have so far been assigned a tentative function (Sassi et al.

2007; Chan et al. 2013) are, by definition, functional genes,

merely pseudogene look-alikes. Up to one-tenth of all known

pseudogenes are transcribed (Pei et al. 2012); some are even

translated in tumor cells (Kandouz et al. 2004). Pseudogene
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transcription is especially prevalent in pluripotent stem cells,

testicular, and germline cells, as well as cancer cells such as

those used by ENCODE to ascertain transcription (Babushok

et al. 2007). Comparative studies have repeatedly shown

that pseudogenes, which have been so defined because

they lack coding potential due to the presence of disruptive

mutations, evolve very rapidly and are mostly subject to no

functional constraint (Pei et al. 2012). Hence, regardless of

their transcriptional or translational status, pseudogenes are

nonfunctional!

Unfortunately, because “functional genomics” is a recog-

nized discipline within molecular biology, while “nonfunc-

tional genomics” is only practiced by a handful of “genomic

clochards” (Makalowski 2003), pseudogenes have always

been looked upon with suspicion and wished away. Gene

prediction algorithms, for instance, tend to zombify pseudo-

genes in silico by annotating many of them as functional

genes. In fact, since 2001, estimates of the number of

protein-coding genes in the human genome went down con-

siderably, while the number of pseudogenes went up.

When a human protein-coding gene is transcribed, its

primary transcript contains not only reading frames but also

introns and exonic sequences devoid of reading frames. In

fact, from the ENCODE data, one can see that only 4% of

primary mRNA sequences is devoted to the coding of proteins,

whereas the other 96% is mostly made of noncoding regions.

Because introns are transcribed, the authors of ENCODE con-

cluded that they are functional. But, are they? Some introns

do indeed evolve slightly slower than pseudogenes, although

this rate difference can be explained by a minute fraction of

intronic sites involved in splicing and other functions. There is a

long debate whether or not introns are indispensable compo-

nents of eukaryotic genome. In one study (Parenteau et al.

2008), 96 introns from 87 yeast genes were knocked out.

Only three of them (3%) seemed to have a negative effect

on growth. Thus, in the majority of cases, introns evolve neu-

trally, whereas a small fraction of introns are under selective

constraint (Ponjavic et al. 2007). Of course, we recognize that

some human introns harbor regulatory sequences (Tishkoff

et al. 2006), as well as sequences that produce small RNA

molecules (Hirose et al. 2003; Zhou et al. 2004). We note,

however, that even those few introns under selection are not

constrained over their entire length. Hare and Palumbi (2003)

compared nine introns from three mammalian species (whale,

seal, and human), and found that only about a quarter of their

nucleotides exhibit telltale signs of functional constraint. A

study of intron 2 of the human BRCA1 gene, revealed that

only 300 bp (3% of the length of the intron) is conserved

(Wardrop et al. 2005). Thus, the practice of ENCODE of sum-

ming up all the lengths of all the introns and adding them to

the pile marked “functional” is clearly excessive and

unwarranted.

The human genome is populated by a very large number of

transposable and mobile elements. Transposable elements,

such as LINEs, SINEs, retroviruses, and DNA transposons,

may, in fact, account for up to two-thirds of the human

genome (Deininger et al. 2003; Jordan et al. 2003; de

Koning et al. 2011) and for more than 31% of the transcrip-

tome (Faulkner et al. 2009). Both human and mouse had been

shown to transcribe nonautonomous retrotransposable ele-

ments called SINEs (e.g., Alu sequences) (Sinnett et al. 1992;

Shaikh et al. 1997; Li et al. 1999; Oler et al. 2012). The phe-

nomenon of SINE transcription is particularly evident in carci-

noma cell lines, in which multiple copies of Alu sequences are

detected in the transcriptome (Umylny et al. 2007). Moreover,

retrotransposons can initiate transcription on both strands

(Denoeud et al. 2007). These transcription initiation sites are

subject to almost no evolutionary constraint, casting doubt on

their “functionality.” Thus, while some transposons have

been domesticated into functionality, one cannot assign a

“universal utility for retrotransposons.” (Faulkner et al.

2009). Whether transcribed or not, the majority of transpo-

sons in the human genome are merely parasites, parasites of

parasites, and dead parasites, whose main “function” would

appear to be causing frameshifts in reading frames, disabling

RNA-specifying sequences, and simply littering the genome.

Let us now examine the manner in which ENCODE

mapped RNA transcripts onto the genome. This will allow us

to document another methodological legerdemain used by

ENCODE—the consistent and excessive favoring of sensitivity

over specificity. Because of the repetitive nature of the human

genome, it is not easy to identify the DNA region from which

an RNA is transcribed. The ENCODE authors used a probability

based alignment tool to map RNA transcripts onto DNA. Their

choice for the type I error, that is, the probability of incorrect

rejection of a true null hypothesis, was 10%. This choice is

unusual in biology, although the more common 5%, 1%, and

0.1% are equally arbitrary. How does this choice affect esti-

mates of “transcriptional functionality?” In ENCODE, the tran-

scripts are divided into those that are smaller than 200 bp, and

those that are larger than 200 bp. The small transcripts cover

only a negligible part of the genome, and in the following they

will be ignored. The total number of long RNA transcripts in

the ENCODE study is approximately 109 million. The mean

transcript length is 564 nucleotides. Thus, a total of 6 billion

nucleotides, or two times the size of the human genome, are

potentially misplaced. This value represents the maximum

error allowed by ENCODE, and the actual error is, of course,

much smaller. Unfortunately, ENCODE does not provide us

with data on the actual error, so we cannot evaluate their

claim. (Of course, nothing is straightforward with ENCODE;

there are close to 47 million transcripts shorter than 200 nu-

cleotides in the data set purportedly composed of transcripts

that are longer than 200 nucleotides.) Oddly, in another

ENCODE paper, it is indirectly suggested that the 10% type

I error may be too stringent, and lowering the threshold “may

reveal many additional repeat loci currently missed due to the

stringent quality thresholds applied to the data” (Djebali et al.
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2012), indicating that increasing the number of false positives

is a worthy pursuit in the eyes of some ENCODE researchers.

Of course, judiciously trading off specificity for sensitivity is a

standard and sound practice in statistical data analysis, how-

ever, by increasing the number of false positives, ENCODE

achieves an increase in the total number of test positives,

thereby, exaggerating the fraction of “functional” elements

within the genome.

At this point, we must ask ourselves, what is the aim of

ENCODE: Is it to identify every possible functional element at

the expense of increasing the number of elements that are

falsely identified as functional? Or is it to create a list of func-

tional elements that is as free of false positives as possible. If

the former, then sensitivity should be favored over selectivity;

if the latter then selectivity should be favored over sensitivity.

ENCODE chose to bias its results by excessively favoring sen-

sitivity over specificity. In fact, they could have saved millions

of dollars and many thousands of research hours by ignoring

selectivity altogether, and proclaiming a priori that 100% of

the genome is functional. Not one functional element would

have been missed by using this procedure.

Histone Modification Does Not Equal
Function

The DNA of eukaryotic organisms is packaged into chromatin,

whose basic repeating unit is the nucleosome. A nucleosome is

formed by wrapping 147 base pairs of DNA around an octa-

mer of four core histones, H2A, H2B, H3, and H4, which are

frequently subject to many types of posttranslational covalent

modification. Some of these modifications may alter the chro-

matin structure and/or function. A recent study looked into the

effects of 38 histone modifications on gene expression (Karlić

et al. 2010). Specifically, the study looked into how much of

the variation in gene expression can be explained by combina-

tions of three different histone modifications. There were 142

combinations of three histone modifications (out of 8,436 pos-

sible such combinations) that turned out to yield statistically

significant results. In other words, less than 2% of the histone

modifications may have something to do with function. The

ENCODE study looked into 12 histone modifications, which

can yield 220 possible combinations of three modifications.

ENCODE does not tell us how many of its histone modifica-

tions occur singly, in doublets, or triplets. However, in light of

the study by Karlić et al. (2010), it is unlikely that all of them

have functional significance.

Interestingly, ENCODE, which is otherwise quite miserly in

spelling out the exact function of its “functional” elements,

provides putative functions for each of its 12 histone modifi-

cations. For example, according to ENCODE, the putative

function of the H4K20me1 modification is “preference for

50 end of genes.” This is akin to asserting that the function

of the White House is to occupy the lot of land at the 1600

block of Pennsylvania Avenue in Washington, D.C.

Open Chromatin Does Not Equal
Function

As a part of the ENCODE project, Song et al. (2011) de-

fined “open chromatin” as genomic regions that are detected

by either DNase I or by a method called Formaldehyde-

Assisted Isolation of Regulatory Elements (FAIRE). They

found that these regions are not bound by histones, that is,

they are nucleosome depleted. They also found that

more than 80% of the transcription start sites were con-

tained within open chromatin regions. In yet another

breathtaking example of affirming the consequent, ENCODE

makes the reverse claim, and adds all open chromatin

regions to the “functional” pile, turning the mostly true state-

ment “most transcription start sites are found within open

chromatin regions” into the entirely false statement “most

open chromatin regions are functional transcription start

sites.”
Are open chromatin regions related to transcription? Only

30% of open chromatin regions shared by all cell types are

even in the neighborhood of transcription start sites, and in

cell-type-specific open chromatin, the proportion is even smal-

ler (Song et al. 2011). The ENCODE authors most probably

smelled a rat and, thus, came up with the suggestion that

open chromatin sites may be “insulators.” However, the de-

letion of two out of three such “insulators” did not eliminate

the insulator activity (Oler et al. 2012).

Transcription Factor Binding Does Not
Equal Function

The identification of transcription factor binding sites can be

accomplished through either computational, for example,

searching for motifs (Bulyk 2003; Bryne et al. 2008), or

experimental methods, for example, chromatin immu-

noprecipitation (Valouev et al. 2008). ENCODE relied

mostly on the latter method. We note, however, that tran-

scription factor binding motifs are usually very short and,

hence, transcription factor binding look-alike sequences

may arise in the genome by chance. None of these two

methods can detect such instances. Recent studies on func-

tional transcription factor binding sites have indicated, as

expected, that a major telltale of functionality is a high

degree of evolutionary conservation (Stone and Wray

2001; Vallania et al. 2009; Wang et al. 2012; Whitfield

et al. 2012). Sadly, the authors of ENCODE decided to dis-

regard evolutionary conservation as a criterion for identifying

function. Thus, their estimate of 8.5% of the human

genome being involved in transcription factor binding

must be hugely exaggerated. For starters, any random

DNA sequence of sufficient length will contain transcription

factor binding sites. What is the magnitude of the exagger-

ation? A study by Vallania et al. (2009) may be instructive in

this respect. Vallania et al. set out to identify transcription
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factor binding sites in the mouse genome by combining

computational predictions based on motifs, evolutionary

conservation among species, and experimental validation.

They concentrated on a single transcription factor, Stat3.

By scanning the whole mouse genome sequence, they

found 1,355,858 putative binding sites. By considering

only sites located up to 10 kb upstream of putative tran-

scription start sites, and by including only sites that were

conserved among mouse and at least 2 other vertebrate

species, the number was reduced to 4,339 (0.32%). From

these 4,339 sites, 14 were tested experimentally; experi-

mental validation was only obtained for 12 (86%) of

them. Assuming that Stat3 is a typical transcription fac-

tor, by extrapolation, the fraction of the genome dedi-

cated to binding transcription factors may be as low as

8.5%�0.32%�86%¼0.024% rather than the 8.5%

touted by ENCODE.

But, let us assume that there are no false positives in

the ENCODE data. Even then, their estimate of approxi-

mately 280 million nucleotides being dedicated to transcrip-

tion factor binding cannot be supported. The reason for

this statement is that ENCODE identified putative transcription

factor binding sites by using a methodology that encouraged

biased errors yielding inflated estimates of functionality.

The ENCODE database for transcription factor binding sites

is organized by institution. The mean length of the entries

from three of them, University of Chicago, SYDH (Stanford,

Yale, University of Southern California, and Harvard), and

Hudson Alpha Institute for Biotechnology, are 824, 457, and

535 nucleotides, respectively. These mean lengths, which

are highly statistically different from one another, are much

larger than the actual sizes of all known transcription

factor binding sites. So far, the majority of known transcription

factor binding sites were found to range in length from 6 to

14 nucleotides (Christy and Nathans 1989; Oliphant et al.

1989; Klemm et al. 1994; Okkema and Fire 1994; Loots and

Ovcharenko 2004; Pavesi et al. 2004), which is 1–2 orders

of magnitude smaller than the ENCODE estimate. (An excep-

tion to the 6-to-14-bp rule is the canonical p53 binding

site, which is composed of two decamer half sites that

can be separated by up to 13 bp.) If we take 10 bp as the

average length for a transcription factor binding site

(Stewart and Plotkin 2012), instead of the approximately

600 bp used by ENCODE, the 8.5% value may turn out to

be 8.5%� 10/600¼ 0.14% or lower, depending on the

proportion of false positives in their data. Interestingly, the

DNA coverage value obtained by SYDH is approximately

18%. We were unable to identify the source of the discrep-

ancy between 18% for SYDH versus the pooled value of

8.5%. The discrepancy may be either an actual error, or the

pooled analysis may have used more stringent criteria than the

SYDH institutional analysis. At present, the discrepancy must

remain one of ENCODE’s many unsolved mysteries.

DNA Methylation Does Not Equal
Function

ENCODE determined that almost all CpGs in the genome

were methylated in at least one cell type or tissue. Saxonov

et al. (2006) studied CpGs at promoter sites of known

protein-coding genes and noticed that expression is negatively

correlated with the degree of CpG methylation in promoters.

Thus, the conclusion of ENCODE was that all methylated sites

are “functional.” We note, however, that the number of

CpGs in the genome is much higher than the number of

protein-coding genes. A scan over all human chromosomes

(22 autosomes + X + Y) reveals that there are 150,281,981

CpG sites (4.8% of the genome), as opposed to merely

20,476 protein-coding genes in the latest ENSEMBL release

(Flicek et al. 2012). The average GC content of the human

genome is 41%. Thus, the randomly expected CpG frequency

is 8.4%. The actual frequency of CpG dinucleotides in the

genome is about half the expected frequency. There are

two reasons for the scantiness of CpGs in the genome. First,

methylated CpGs readily mutate to non-CpG dinucleotides.

Second, by depressing gene expression, CpG dinucleotides are

actively selected against from regions of importance in the

genome. Thus, what ENCODE should have sought are regions

devoid of CpGs rather than regions with CpGs.

According to ENCODE, 96% of all CpGs in the genome are

methylated. This observation is not an indication of function,

but rather an indication that all CpGs have the ability to be

methylated. This ability is merely a chemical property, not a

function. Finally, it is known that CpG methylation is indepen-

dent of sequence context (Meissner et al. 2008), and that the

pattern of CpG methylation in cancer cells is completely dif-

ferent from that in normal cells (Lodygin et al. 2008;

Fernandez et al. 2012), which may render the entire

ENCODE edifice on the issue of methylation entirely irrelevant.

Does the Frequency Distribution of
Primate-Specific Derived Alleles
Provide Evidence for Purifying
Selection?

In this section, we discuss the purported evidence for purifying

selection on ENCODE elements. The ENCODE authors com-

pared the frequency distribution of 205,395 derived ENCODE

single-nucleotide polymorphisms (SNPs) and 85,155 derived

non-ENCODE SNPs and found that ENCODE-annotated SNPs

exhibit “depressed derived allele frequencies consistent with

recent negative selection.” Here, we examine in detail the

purported evidence for selection. Of course, it is not possible

to enumerate all the methodological errors in this analysis;

some errors, such as disregarding the underlying phylogeny

for the 60 human genomes, and treating them as indepen-

dently derived, will not be commented upon.
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Given that the number of SNPs in the human population

exceeds 10 million, one might wonder why so few SNPs were

used in the ENCODE study. The reason lies in the choice of

“primate-specific regions” and the manner in which the data

were “cleaned.” Based on a three-step so-called EPO align-

ment (Paten, Herrero, et al. 2008; Paten et al. 2008) of 11

mammalian species, the authors identified 1.3 million

primate-specific regions that were at least 200 bp in length.

The term “primate specific” refers to the fact that these se-

quences were not found in mouse, rat, rabbit, horse, pig, and

cow. By choosing primate-specific regions only, ENCODE

effectively removed everything that is of interest functionally

(e.g., protein coding and RNA-specifying genes as well as

evolutionarily conserved regulatory regions). What was left

consisted among others of dead transposable and retrotran-

sposable elements, such as a TcMAR-Tigger DNA transposon

fossil (Smit and Riggs 1996) and a dead AluSx, both on chro-

mosome 19.

Interestingly, out of three ethnic samples that were avail-

able to the ENCODE researchers (59 Yorubans, 60 East Asians

from Beijing and Tokyo, and 60 Utah residents of Northern

and Western European ancestry), only the Yoruba sample was

used. Because polymorphic sites were defined by using all

three human samples, the removal of two samples had the

unfortunate effect of turning some polymorphic sites into

monomorphic ones. As a consequence, the ENCODE data

include 2,136 alleles each with a frequency of exactly 0. In a

miraculous feat of “next generation” science, the ENCODE

authors were able to determine the frequencies of nonexistent

alleles.

The primate-specific regions were then masked by exclud-

ing repeats, CpG islands, CG dinucleotide, and any other re-

gions not included in the EPO alignment block or in the

human genome. After the masking, the actual primate-spe-

cific segments that were left for analysis were extremely small.

Eighty-two percent of the segments were smaller than 100 bp

and the median was 15 bp. Thus, the ENCODE authors would

like us to believe that inferences based in part on approxi-

mately 85,000 alignment blocks of size 1 bp and approxi-

mately 76,000 alignment blocks of size 2 bp are reliable!

The primate-specific segments were, then, divided into seg-

ments containing ENCODE-annotated sequences and “con-

trols.” There are three interesting facts that were not

commented upon by ENCODE: 1) the ENCODE-annotated

sequences are much shorter than the controls, 2) some seg-

ments contain both ENCODE and non-ENCODE elements,

and 3) 15% of all SNPs in the ENCODE-annotated sequences,

and 17% of the SNPs in the control segments are located

within regions defined as short repeats, repetitive elements,

or nested repeat elements. Be that as it may, the ENCODE-

containing sample had on average a frequency that was lower

by 0.20% than that of the derived alleles in the control region.

Of course, with such huge sample sizes, the difference turned

out to be highly significant statistically (Kolmogorov–Smirnov

test, P¼ 4� 10�37).

Is this statistically significant difference important from a

biological point of view? First, with very large numbers of

loci, one can easily obtain statistically significant differences.

Second, the statistical tests employed by ENCODE let us be-

lieve that the possibility of linkage disequilibrium may not have

been taken into account. That is, it is not clear to us whether

the test took into account the fact that many of the allele

frequencies are not independent because the alleles occupy

loci in very close proximity to one another. Finally, the exten-

sive overlap between the two distributions (�99.958% by our

calculations) indicates that the difference between the two

distributions is likely too small to be biologically meaningful.

Can the shape of the derived allele frequency distribution

be used as a test for selection? That is, is the excess of ex-

tremely rare alleles (private alleles) necessarily indicative of se-

lection? Actually, such a distribution may also be due to

demographic effects, especially rapid population growth

(Slatkin and Hudson 1991; Williamson et al. 2005), back-

ground selection (Charlesworth et al. 1993; Kaiser and

Charlesworth 2009), or sequencing errors (Achaz 2008;

Knudsen and Miyamoto 2009; MacArthur et al. 2012).

Before claiming evidence for selection, ENCODE needs to

refute these causes.

“Junk DNA Is Dead! Long Live Junk
DNA”

If there was a single succinct take-home message of the

ENCODE consortium, it was the battle cry “Junk DNA is

Dead!” Actually, a surprisingly large number of scientists

have had their knickers in a twist over “junk DNA” ever

since the term was coined by Ohno (1972). The dislike for

the term became more evident following the “disappointing”
finding that protein-coding genes occupy only a minuscule

fraction of the human genome. The first attempt to estimate

the number of protein-coding genes in the human genome

appeared in the literature approximately 50 years ago. Vogel

(1964) used the molecular weight of the human haploid chro-

mosomes to calculate the genome size and by using the size

of a “typical” gene came up with an estimate of 6.7 million

genes per haploid chromosome set (Pertea and Salzberg

2010). Before the unveiling of the sequence of the human

genome in 2001, learned estimates of human protein-coding

gene number ranged from 50,000 to more than 140,000

(Roest Crollius et al. 2000), while estimates in GeneSweep,

an informal betting contest started at Cold Spring Harbor

Laboratory in 2000, in which scientists attempted to guess

how many protein-coding sequences it takes to make a

human (Pennisi 2003), reached values as high as 212,278

genes. The number of protein-coding genes went down con-

siderably with the publication of the two draft human ge-

nomes. In one publication, it was stated that there are
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“26,588 protein-encoding transcripts for which there was

strong corroborating evidence and an additional �12,000

computationally derived genes with mouse matches or other

weak supporting evidence” (Venter et al. 2001). In the other

publication, it was stated that there “appear to be about

30,000–40,000 protein-coding genes in the human genome”
(International Human Genome Sequencing Consortium

2001). When the “finished” euchromatic sequence of the

human genome was published, the number of protein-coding

genes went down even further to “20,000–25,000

protein-coding genes” (International Human Genome

Sequencing Consortium 2004). This “diminishing” tendency

continues to this day, with the number of protein-coding

genes in Ensembl being 21,065 and 20,848 on May 2012

and January 2013, respectively.

The paucity of protein-coding genes in the human genome

in conjunction with the fact that the “lowly” nematode Cae-

norhabditis elegans turned out to have 20,517 protein-coding

genes, resulted in a puzzling situation similar to the C-value

paradox (Thomas 1971), whereby the number of genes did

not sit well with the perceived complexity of the human or-

ganism. Thus, “junk DNA” had to go.

The ENCODE results purported to revolutionize our under-

standing of the genome by “proving” that DNA hitherto la-

beled “junk” is in fact functional. The ENCODE position

concerning the nonexistence of “junk DNA” was mainly

based on several logical misconceptions and, possibly, a

degree of linguistic prudery.

Let us first dispense with the semantic baggage of the term

“junk.” Some biologists find the term “junk DNA” “deroga-

tory” and “disrespectful” (Brosius and Gould 1992). In addi-

tion, the fact that “junk” is used euphemistically in off-color

contexts does not endear it to many biologists.

In dissecting common objections to “junk DNA,” we iden-

tified several misconceptions, chief among them 1) a lack of

knowledge of the original and correct sense of the term, 2)

the belief that evolution can always get rid of nonfunctional

DNA, and 3) the belief that “future potential” constitutes “a

function.”
First, we note that Ohno’s original definition of “junk

DNA” referred to a genomic segment on which selection

does not operate (Ohno 1972). The correct usage implies a

genomic segment that has no immediate use, but that might

occasionally acquire a useful function in the future. This sense

of the word is very similar to the colloquial meaning of “junk,”
such as when a person mentions a “garage full of junk,” in

which the implication is that the space is full of useless objects,

but that in the future some of them may be useful. Of course,

as in the case of the garage full of junk, the majority of junk

DNA will never acquire a function. This sense of the term

“junk DNA” was used by Jacob (1977) in his famous paper

“Evolution and Tinkering”: “[N]atural selection does not work

as an engineer . . . It works like a tinkerer—a tinkerer who

does not know exactly what he is going to produce but

uses whatever he finds around him whether it be pieces

of string, fragments of wood, or old cardboards . . . The

tinkerer . . . manages with odds and ends. What he ultimately

produces is generally related to no special project, and it re-

sults from a series of contingent events, of all the opportuni-

ties he had to enrich his stock with leftovers.”
Second, there exists a misconception among functional

genomicists that the evolutionary process can produce a

genome that is mostly functional. Actually, evolution can

only produce a genome devoid of “junk” if and only if the

effective population size is huge and the deleterious effects of

increasing genome size are considerable (Lynch 2007). In the

majority of known bacterial species, these two conditions are

met; selection against excess genome is extremely efficient

due to enormous effective population sizes, and the fact

that replication time and, hence, generation time are corre-

lated with genome size. In humans, there seems to be no

selection against excess genomic baggage. Our effective pop-

ulation size is pitiful and neither the time it takes to replicate

the genome nor generation time correlate with genome size.

Third, numerous researchers use teleological reasoning ac-

cording to which the function of a stretch of DNA lies in its

future potential. Such researchers (Makalowski 2003; Wen

et al. 2012) use the term “junk DNA” to denote a piece of

DNA that can never, under any evolutionary circumstance, be

useful. As any piece of DNA may become functional, many are

eager to get rid of the term “junk DNA” altogether. This type

of reasoning is false. Of course, pieces of junk DNA may be

coopted into function, but that does not mean that they pres-

ently are functional. Junk DNA may, in fact, exhibit a very

similar behavior to the regular junk in one’s garage, which is

kept for years and years, and then thrown out a day before it

may become useful (David Wool, personal communication).

To deal with the confusion in the literature, we propose to

refresh the memory of those objecting to “junk DNA” by

repeating a 15-year old terminological distinction made by

Brenner (1998), who astutely differentiated between “junk

DNA,” one the one hand, and “garbage DNA,” on the

other: “Some years ago I noticed that there are two kinds

of rubbish in the world and that most languages have differ-

ent words to distinguish them. There is the rubbish we keep,

which is junk, and the rubbish we throw away, which is gar-

bage. The excess DNA in our genomes is junk, and it is there

because it is harmless, as well as being useless, and because

the molecular processes generating extra DNA outpace those

getting rid of it. Were the extra DNA to become disadvanta-

geous, it would become subject to selection, just as junk that

takes up too much space, or is beginning to smell, is instantly

converted to garbage . . . ”.

It has been pointed to us that junk DNA, garbage DNA, and

functional DNA may not add up to 100% because some parts

of the genome may be functional but not under constraint

with respect to nucleotide composition. We tentatively call

such genomic segments “indifferent DNA.” Indifferent DNA
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refers to DNA sites that are functional, but show no evidence

of selection against point mutations. Deletion of these sites,

however, is deleterious, and is subject to purifying selection.

Examples of indifferent DNA are spacers and flanking ele-

ments whose presence is required but whose sequence is

not important. Another such case is the third position of

4-fold redundant codons, which needs to be present to

avoid a downstream frameshift.

Large genomes belonging to species with small effective

population sizes should contain considerable amounts of junk

DNA and possibly even some garbage DNA. The amount of

indifferent DNA is not known. Junk DNA and indifferent DNA

can persist in the genome for very long periods of evolutionary

time; garbage is transient. In this paper, we have not dealt in

any detail with the implications of ENCODE on genomes much

larger than our own. If ENCODE is right in its claim that junk

DNA does not exist, then it would seem sensible to assume

that organisms with much larger genomes are also devoid of

junk. Thus, taking ENCODE’s rationale to its logical conclusion,

one would have to surmise that onions, marbled lungfishes,

and certain amoebas are respectively 5, 40, and 250 times

more complex phenotypically than we are (Doolittle 2013).

We urge biologists not be afraid of junk DNA. The only

people that should be afraid are those claiming that natural

processes are insufficient to explain life and that evolutionary

theory should be supplemented or supplanted by an intelli-

gent designer (Dembski 1998; Wells 2004). ENCODE’s take-

home message that everything has a function implies purpose,

and purpose is the only thing that evolution cannot provide.

Needless to say, in light of our investigation of the ENCODE

publication, it is safe to state that the news concerning the

death of “junk DNA” has been greatly exaggerated.

“Big Science,” “Small Science,” and
ENCODE

The Editor-in-Chief of Science, Alberts (2012), has recently

expressed concern about the future of “small science,”
given that ENCODE-style Big Science grabs the headlines

that decision makers so dearly love. Actually, the main func-

tion of Big Science is to generate massive amounts of reliable

and easily accessible data. The road from data to wisdom is

quite long and convoluted (Royar 1994). Insight, understand-

ing, and scientific progress are generally achieved by “small

science.” The Human Genome Project is a marvelous example

of “big science,” as are the Sloan Digital Sky Survey (Abazajian

et al. 2009) and the Tree of Life Web Project (Maddison et al.

2007).

Did ENCODE generate massive amounts of reliable and

easily accessible data? Judging by the computer memory it

takes to store the data, ENCODE certainly delivered quantita-

tively. Unfortunately, the ENCODE data are neither easily ac-

cessible nor very useful—without ENCODE, researchers would

have had to examine 3.5 billion nucleotides in search of

function, with ENCODE, they would have to sift through 2.7

billion nucleotides. ENCODE’s biggest scientific sin was not

being satisfied with its role as data provider; it assumed the

small-science role of interpreter of the data, thereby perform-

ing a kind of textual hermeneutics on a 3.5-billion-long DNA

text. Unfortunately, ENCODE disregarded the rules of scien-

tific interpretation and adopted a position common to many

types of theological hermeneutics, whereby every letter in a

text is assumed a priori to have a meaning.

So, what have we learned from the efforts of 442 re-

searchers consuming 288 million dollars? According to Eric

Lander, a Human Genome Project luminary, ENCODE is the

“Google Maps of the human genome” (Kolata 2012). We

beg to differ, ENCODE is considerably worse than even

Apple Maps. Evolutionary conservation may be frustratingly

silent on the nature of the functions it highlights, but progress

in understanding the functional significance of DNA se-

quences can only be achieved by not ignoring evolutionary

principles.

High-throughput genomics and the centralization of

science funding have enabled Big Science to generate

“high-impact false positives” by the truckload (The PLoS

Medicine Editors 2005; Platt et al. 2010; Anonymous

2012a, 2012b; MacArthur 2012; Moyer 2012). Those in-

volved in Big Science will do well to remember the depress-

ingly true popular maxim: “If it is too good to be true, it is too

good to be true.”
We conclude that the ENCODE Consortium has, so far,

failed to provide a compelling reason to abandon the prevail-

ing understanding among evolutionary biologists according to

which most of the human genome is devoid of function. The

ENCODE results were predicted by one of its lead authors to

necessitate the rewriting of textbooks (Pennisi 2012a, 2012b).

We agree, many textbooks dealing with marketing, mass-

media hype, and public relations may well have to be

rewritten.
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